3.1.34 \(\int \frac {\sec ^5(x)}{a+b \cos ^2(x)} \, dx\) [34]

3.1.34.1 Optimal result
3.1.34.2 Mathematica [B] (verified)
3.1.34.3 Rubi [A] (verified)
3.1.34.4 Maple [A] (verified)
3.1.34.5 Fricas [A] (verification not implemented)
3.1.34.6 Sympy [F]
3.1.34.7 Maxima [A] (verification not implemented)
3.1.34.8 Giac [A] (verification not implemented)
3.1.34.9 Mupad [B] (verification not implemented)

3.1.34.1 Optimal result

Integrand size = 15, antiderivative size = 90 \[ \int \frac {\sec ^5(x)}{a+b \cos ^2(x)} \, dx=\frac {\left (3 a^2-4 a b+8 b^2\right ) \text {arctanh}(\sin (x))}{8 a^3}-\frac {b^{5/2} \text {arctanh}\left (\frac {\sqrt {b} \sin (x)}{\sqrt {a+b}}\right )}{a^3 \sqrt {a+b}}+\frac {(3 a-4 b) \sec (x) \tan (x)}{8 a^2}+\frac {\sec ^3(x) \tan (x)}{4 a} \]

output
1/8*(3*a^2-4*a*b+8*b^2)*arctanh(sin(x))/a^3-b^(5/2)*arctanh(sin(x)*b^(1/2) 
/(a+b)^(1/2))/a^3/(a+b)^(1/2)+1/8*(3*a-4*b)*sec(x)*tan(x)/a^2+1/4*sec(x)^3 
*tan(x)/a
 
3.1.34.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(215\) vs. \(2(90)=180\).

Time = 0.85 (sec) , antiderivative size = 215, normalized size of antiderivative = 2.39 \[ \int \frac {\sec ^5(x)}{a+b \cos ^2(x)} \, dx=\frac {-2 \left (3 a^2-4 a b+8 b^2\right ) \log \left (\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )\right )+2 \left (3 a^2-4 a b+8 b^2\right ) \log \left (\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )+\frac {8 b^{5/2} \log \left (\sqrt {a+b}-\sqrt {b} \sin (x)\right )}{\sqrt {a+b}}-\frac {8 b^{5/2} \log \left (\sqrt {a+b}+\sqrt {b} \sin (x)\right )}{\sqrt {a+b}}+\frac {a^2}{\left (\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )\right )^4}-\frac {a^2}{\left (\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )^4}+\frac {a (-3 a+4 b)}{\left (\cos \left (\frac {x}{2}\right )+\sin \left (\frac {x}{2}\right )\right )^2}+\frac {a (-3 a+4 b)}{-1+\sin (x)}}{16 a^3} \]

input
Integrate[Sec[x]^5/(a + b*Cos[x]^2),x]
 
output
(-2*(3*a^2 - 4*a*b + 8*b^2)*Log[Cos[x/2] - Sin[x/2]] + 2*(3*a^2 - 4*a*b + 
8*b^2)*Log[Cos[x/2] + Sin[x/2]] + (8*b^(5/2)*Log[Sqrt[a + b] - Sqrt[b]*Sin 
[x]])/Sqrt[a + b] - (8*b^(5/2)*Log[Sqrt[a + b] + Sqrt[b]*Sin[x]])/Sqrt[a + 
 b] + a^2/(Cos[x/2] - Sin[x/2])^4 - a^2/(Cos[x/2] + Sin[x/2])^4 + (a*(-3*a 
 + 4*b))/(Cos[x/2] + Sin[x/2])^2 + (a*(-3*a + 4*b))/(-1 + Sin[x]))/(16*a^3 
)
 
3.1.34.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.30, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.467, Rules used = {3042, 3665, 316, 402, 397, 219, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^5(x)}{a+b \cos ^2(x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (x+\frac {\pi }{2}\right )^5 \left (a+b \sin \left (x+\frac {\pi }{2}\right )^2\right )}dx\)

\(\Big \downarrow \) 3665

\(\displaystyle \int \frac {1}{\left (1-\sin ^2(x)\right )^3 \left (a-b \sin ^2(x)+b\right )}d\sin (x)\)

\(\Big \downarrow \) 316

\(\displaystyle \frac {\int \frac {-3 b \sin ^2(x)+3 a-b}{\left (1-\sin ^2(x)\right )^2 \left (-b \sin ^2(x)+a+b\right )}d\sin (x)}{4 a}+\frac {\sin (x)}{4 a \left (1-\sin ^2(x)\right )^2}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\int \frac {3 a^2-b a+4 b^2-(3 a-4 b) b \sin ^2(x)}{\left (1-\sin ^2(x)\right ) \left (-b \sin ^2(x)+a+b\right )}d\sin (x)}{2 a}+\frac {(3 a-4 b) \sin (x)}{2 a \left (1-\sin ^2(x)\right )}}{4 a}+\frac {\sin (x)}{4 a \left (1-\sin ^2(x)\right )^2}\)

\(\Big \downarrow \) 397

\(\displaystyle \frac {\frac {\frac {\left (3 a^2-4 a b+8 b^2\right ) \int \frac {1}{1-\sin ^2(x)}d\sin (x)}{a}-\frac {8 b^3 \int \frac {1}{-b \sin ^2(x)+a+b}d\sin (x)}{a}}{2 a}+\frac {(3 a-4 b) \sin (x)}{2 a \left (1-\sin ^2(x)\right )}}{4 a}+\frac {\sin (x)}{4 a \left (1-\sin ^2(x)\right )^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\frac {\left (3 a^2-4 a b+8 b^2\right ) \text {arctanh}(\sin (x))}{a}-\frac {8 b^3 \int \frac {1}{-b \sin ^2(x)+a+b}d\sin (x)}{a}}{2 a}+\frac {(3 a-4 b) \sin (x)}{2 a \left (1-\sin ^2(x)\right )}}{4 a}+\frac {\sin (x)}{4 a \left (1-\sin ^2(x)\right )^2}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {\frac {\left (3 a^2-4 a b+8 b^2\right ) \text {arctanh}(\sin (x))}{a}-\frac {8 b^{5/2} \text {arctanh}\left (\frac {\sqrt {b} \sin (x)}{\sqrt {a+b}}\right )}{a \sqrt {a+b}}}{2 a}+\frac {(3 a-4 b) \sin (x)}{2 a \left (1-\sin ^2(x)\right )}}{4 a}+\frac {\sin (x)}{4 a \left (1-\sin ^2(x)\right )^2}\)

input
Int[Sec[x]^5/(a + b*Cos[x]^2),x]
 
output
Sin[x]/(4*a*(1 - Sin[x]^2)^2) + ((((3*a^2 - 4*a*b + 8*b^2)*ArcTanh[Sin[x]] 
)/a - (8*b^(5/2)*ArcTanh[(Sqrt[b]*Sin[x])/Sqrt[a + b]])/(a*Sqrt[a + b]))/( 
2*a) + ((3*a - 4*b)*Sin[x])/(2*a*(1 - Sin[x]^2)))/(4*a)
 

3.1.34.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 316
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d))   Int[(a + b*x^2)^(p + 1)*(c + d*x 
^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x 
], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  ! 
( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, c, d, 2, 
 p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3665
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f 
Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Cos[e + 
 f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]
 
3.1.34.4 Maple [A] (verified)

Time = 1.76 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.52

method result size
default \(\frac {1}{16 a \left (\sin \left (x \right )-1\right )^{2}}-\frac {3 a -4 b}{16 a^{2} \left (\sin \left (x \right )-1\right )}+\frac {\left (-3 a^{2}+4 a b -8 b^{2}\right ) \ln \left (\sin \left (x \right )-1\right )}{16 a^{3}}-\frac {1}{16 a \left (\sin \left (x \right )+1\right )^{2}}-\frac {3 a -4 b}{16 a^{2} \left (\sin \left (x \right )+1\right )}+\frac {\left (3 a^{2}-4 a b +8 b^{2}\right ) \ln \left (\sin \left (x \right )+1\right )}{16 a^{3}}-\frac {b^{3} \operatorname {arctanh}\left (\frac {b \sin \left (x \right )}{\sqrt {\left (a +b \right ) b}}\right )}{a^{3} \sqrt {\left (a +b \right ) b}}\) \(137\)
risch \(-\frac {i \left (3 a \,{\mathrm e}^{7 i x}-4 b \,{\mathrm e}^{7 i x}+11 a \,{\mathrm e}^{5 i x}-4 b \,{\mathrm e}^{5 i x}-11 a \,{\mathrm e}^{3 i x}+4 b \,{\mathrm e}^{3 i x}-3 \,{\mathrm e}^{i x} a +4 \,{\mathrm e}^{i x} b \right )}{4 \left ({\mathrm e}^{2 i x}+1\right )^{4} a^{2}}+\frac {3 \ln \left ({\mathrm e}^{i x}+i\right )}{8 a}-\frac {\ln \left ({\mathrm e}^{i x}+i\right ) b}{2 a^{2}}+\frac {\ln \left ({\mathrm e}^{i x}+i\right ) b^{2}}{a^{3}}-\frac {3 \ln \left ({\mathrm e}^{i x}-i\right )}{8 a}+\frac {\ln \left ({\mathrm e}^{i x}-i\right ) b}{2 a^{2}}-\frac {\ln \left ({\mathrm e}^{i x}-i\right ) b^{2}}{a^{3}}+\frac {\sqrt {\left (a +b \right ) b}\, b^{2} \ln \left ({\mathrm e}^{2 i x}-\frac {2 i \sqrt {\left (a +b \right ) b}\, {\mathrm e}^{i x}}{b}-1\right )}{2 \left (a +b \right ) a^{3}}-\frac {\sqrt {\left (a +b \right ) b}\, b^{2} \ln \left ({\mathrm e}^{2 i x}+\frac {2 i \sqrt {\left (a +b \right ) b}\, {\mathrm e}^{i x}}{b}-1\right )}{2 \left (a +b \right ) a^{3}}\) \(265\)

input
int(sec(x)^5/(a+b*cos(x)^2),x,method=_RETURNVERBOSE)
 
output
1/16/a/(sin(x)-1)^2-1/16*(3*a-4*b)/a^2/(sin(x)-1)+1/16/a^3*(-3*a^2+4*a*b-8 
*b^2)*ln(sin(x)-1)-1/16/a/(sin(x)+1)^2-1/16*(3*a-4*b)/a^2/(sin(x)+1)+1/16* 
(3*a^2-4*a*b+8*b^2)/a^3*ln(sin(x)+1)-b^3/a^3/((a+b)*b)^(1/2)*arctanh(b*sin 
(x)/((a+b)*b)^(1/2))
 
3.1.34.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 270, normalized size of antiderivative = 3.00 \[ \int \frac {\sec ^5(x)}{a+b \cos ^2(x)} \, dx=\left [\frac {8 \, b^{2} \sqrt {\frac {b}{a + b}} \cos \left (x\right )^{4} \log \left (-\frac {b \cos \left (x\right )^{2} + 2 \, {\left (a + b\right )} \sqrt {\frac {b}{a + b}} \sin \left (x\right ) - a - 2 \, b}{b \cos \left (x\right )^{2} + a}\right ) + {\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \cos \left (x\right )^{4} \log \left (\sin \left (x\right ) + 1\right ) - {\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \cos \left (x\right )^{4} \log \left (-\sin \left (x\right ) + 1\right ) + 2 \, {\left ({\left (3 \, a^{2} - 4 \, a b\right )} \cos \left (x\right )^{2} + 2 \, a^{2}\right )} \sin \left (x\right )}{16 \, a^{3} \cos \left (x\right )^{4}}, \frac {16 \, b^{2} \sqrt {-\frac {b}{a + b}} \arctan \left (\sqrt {-\frac {b}{a + b}} \sin \left (x\right )\right ) \cos \left (x\right )^{4} + {\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \cos \left (x\right )^{4} \log \left (\sin \left (x\right ) + 1\right ) - {\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \cos \left (x\right )^{4} \log \left (-\sin \left (x\right ) + 1\right ) + 2 \, {\left ({\left (3 \, a^{2} - 4 \, a b\right )} \cos \left (x\right )^{2} + 2 \, a^{2}\right )} \sin \left (x\right )}{16 \, a^{3} \cos \left (x\right )^{4}}\right ] \]

input
integrate(sec(x)^5/(a+b*cos(x)^2),x, algorithm="fricas")
 
output
[1/16*(8*b^2*sqrt(b/(a + b))*cos(x)^4*log(-(b*cos(x)^2 + 2*(a + b)*sqrt(b/ 
(a + b))*sin(x) - a - 2*b)/(b*cos(x)^2 + a)) + (3*a^2 - 4*a*b + 8*b^2)*cos 
(x)^4*log(sin(x) + 1) - (3*a^2 - 4*a*b + 8*b^2)*cos(x)^4*log(-sin(x) + 1) 
+ 2*((3*a^2 - 4*a*b)*cos(x)^2 + 2*a^2)*sin(x))/(a^3*cos(x)^4), 1/16*(16*b^ 
2*sqrt(-b/(a + b))*arctan(sqrt(-b/(a + b))*sin(x))*cos(x)^4 + (3*a^2 - 4*a 
*b + 8*b^2)*cos(x)^4*log(sin(x) + 1) - (3*a^2 - 4*a*b + 8*b^2)*cos(x)^4*lo 
g(-sin(x) + 1) + 2*((3*a^2 - 4*a*b)*cos(x)^2 + 2*a^2)*sin(x))/(a^3*cos(x)^ 
4)]
 
3.1.34.6 Sympy [F]

\[ \int \frac {\sec ^5(x)}{a+b \cos ^2(x)} \, dx=\int \frac {\sec ^{5}{\left (x \right )}}{a + b \cos ^{2}{\left (x \right )}}\, dx \]

input
integrate(sec(x)**5/(a+b*cos(x)**2),x)
 
output
Integral(sec(x)**5/(a + b*cos(x)**2), x)
 
3.1.34.7 Maxima [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.61 \[ \int \frac {\sec ^5(x)}{a+b \cos ^2(x)} \, dx=\frac {b^{3} \log \left (\frac {b \sin \left (x\right ) - \sqrt {{\left (a + b\right )} b}}{b \sin \left (x\right ) + \sqrt {{\left (a + b\right )} b}}\right )}{2 \, \sqrt {{\left (a + b\right )} b} a^{3}} - \frac {{\left (3 \, a - 4 \, b\right )} \sin \left (x\right )^{3} - {\left (5 \, a - 4 \, b\right )} \sin \left (x\right )}{8 \, {\left (a^{2} \sin \left (x\right )^{4} - 2 \, a^{2} \sin \left (x\right )^{2} + a^{2}\right )}} + \frac {{\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \log \left (\sin \left (x\right ) + 1\right )}{16 \, a^{3}} - \frac {{\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \log \left (\sin \left (x\right ) - 1\right )}{16 \, a^{3}} \]

input
integrate(sec(x)^5/(a+b*cos(x)^2),x, algorithm="maxima")
 
output
1/2*b^3*log((b*sin(x) - sqrt((a + b)*b))/(b*sin(x) + sqrt((a + b)*b)))/(sq 
rt((a + b)*b)*a^3) - 1/8*((3*a - 4*b)*sin(x)^3 - (5*a - 4*b)*sin(x))/(a^2* 
sin(x)^4 - 2*a^2*sin(x)^2 + a^2) + 1/16*(3*a^2 - 4*a*b + 8*b^2)*log(sin(x) 
 + 1)/a^3 - 1/16*(3*a^2 - 4*a*b + 8*b^2)*log(sin(x) - 1)/a^3
 
3.1.34.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.41 \[ \int \frac {\sec ^5(x)}{a+b \cos ^2(x)} \, dx=\frac {b^{3} \arctan \left (\frac {b \sin \left (x\right )}{\sqrt {-a b - b^{2}}}\right )}{\sqrt {-a b - b^{2}} a^{3}} + \frac {{\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \log \left (\sin \left (x\right ) + 1\right )}{16 \, a^{3}} - \frac {{\left (3 \, a^{2} - 4 \, a b + 8 \, b^{2}\right )} \log \left (-\sin \left (x\right ) + 1\right )}{16 \, a^{3}} - \frac {3 \, a \sin \left (x\right )^{3} - 4 \, b \sin \left (x\right )^{3} - 5 \, a \sin \left (x\right ) + 4 \, b \sin \left (x\right )}{8 \, {\left (\sin \left (x\right )^{2} - 1\right )}^{2} a^{2}} \]

input
integrate(sec(x)^5/(a+b*cos(x)^2),x, algorithm="giac")
 
output
b^3*arctan(b*sin(x)/sqrt(-a*b - b^2))/(sqrt(-a*b - b^2)*a^3) + 1/16*(3*a^2 
 - 4*a*b + 8*b^2)*log(sin(x) + 1)/a^3 - 1/16*(3*a^2 - 4*a*b + 8*b^2)*log(- 
sin(x) + 1)/a^3 - 1/8*(3*a*sin(x)^3 - 4*b*sin(x)^3 - 5*a*sin(x) + 4*b*sin( 
x))/((sin(x)^2 - 1)^2*a^2)
 
3.1.34.9 Mupad [B] (verification not implemented)

Time = 2.68 (sec) , antiderivative size = 969, normalized size of antiderivative = 10.77 \[ \int \frac {\sec ^5(x)}{a+b \cos ^2(x)} \, dx=\text {Too large to display} \]

input
int(1/(cos(x)^5*(a + b*cos(x)^2)),x)
 
output
(5*a^3*sin(x) + atan((b^7*sin(x)*(a*b^5 + b^6)^(1/2)*128i - a*sin(x)*(a*b^ 
5 + b^6)^(3/2)*64i - b*sin(x)*(a*b^5 + b^6)^(3/2)*128i + a*b^6*sin(x)*(a*b 
^5 + b^6)^(1/2)*192i + a^6*b*sin(x)*(a*b^5 + b^6)^(1/2)*9i + a^2*b^5*sin(x 
)*(a*b^5 + b^6)^(1/2)*64i + a^3*b^4*sin(x)*(a*b^5 + b^6)^(1/2)*40i + a^4*b 
^3*sin(x)*(a*b^5 + b^6)^(1/2)*25i - a^5*b^2*sin(x)*(a*b^5 + b^6)^(1/2)*6i) 
/(40*a^3*b^7 + 65*a^4*b^6 + 19*a^5*b^5 + 3*a^6*b^4 + 9*a^7*b^3))*(a*b^5 + 
b^6)^(1/2)*8i - 3*a^3*sin(x)^3 + 3*a^3*atanh(sin(x)) + 8*b^3*atanh(sin(x)) 
 - 4*a*b^2*sin(x) + a^2*b*sin(x) - atan((b^7*sin(x)*(a*b^5 + b^6)^(1/2)*12 
8i - a*sin(x)*(a*b^5 + b^6)^(3/2)*64i - b*sin(x)*(a*b^5 + b^6)^(3/2)*128i 
+ a*b^6*sin(x)*(a*b^5 + b^6)^(1/2)*192i + a^6*b*sin(x)*(a*b^5 + b^6)^(1/2) 
*9i + a^2*b^5*sin(x)*(a*b^5 + b^6)^(1/2)*64i + a^3*b^4*sin(x)*(a*b^5 + b^6 
)^(1/2)*40i + a^4*b^3*sin(x)*(a*b^5 + b^6)^(1/2)*25i - a^5*b^2*sin(x)*(a*b 
^5 + b^6)^(1/2)*6i)/(40*a^3*b^7 + 65*a^4*b^6 + 19*a^5*b^5 + 3*a^6*b^4 + 9* 
a^7*b^3))*sin(x)^2*(a*b^5 + b^6)^(1/2)*16i + atan((b^7*sin(x)*(a*b^5 + b^6 
)^(1/2)*128i - a*sin(x)*(a*b^5 + b^6)^(3/2)*64i - b*sin(x)*(a*b^5 + b^6)^( 
3/2)*128i + a*b^6*sin(x)*(a*b^5 + b^6)^(1/2)*192i + a^6*b*sin(x)*(a*b^5 + 
b^6)^(1/2)*9i + a^2*b^5*sin(x)*(a*b^5 + b^6)^(1/2)*64i + a^3*b^4*sin(x)*(a 
*b^5 + b^6)^(1/2)*40i + a^4*b^3*sin(x)*(a*b^5 + b^6)^(1/2)*25i - a^5*b^2*s 
in(x)*(a*b^5 + b^6)^(1/2)*6i)/(40*a^3*b^7 + 65*a^4*b^6 + 19*a^5*b^5 + 3*a^ 
6*b^4 + 9*a^7*b^3))*sin(x)^4*(a*b^5 + b^6)^(1/2)*8i - 6*a^3*atanh(sin(x...